1.5A LED Driver with internal switch
General Description

TTP933 is a high efficiency, constant current, continuous mode inductive step-down converter, designed for driving constant current to high power (single or multiple) LED with only 4 external components. TTP933 operates from input supply between 5V and 33V and provides an externally adjustable output current of up to 1.5A.

The TTP933 is specifically designed with PFM control to enhance the efficiency up to 97%. The Output current can be modify by an external resistor, and can adjusted, by applying an external control signal to the DIM pin. The DIM pin will accept a PWM waveform.

Additionally, to ensure the system reliability, TTP933 is built-in with over temperature protection, and LED open-circuit short-circuit protection to protect system from being damaged.

Features

- 1.5A output current
- Wide input voltage range: 5V to 33V
- High efficiency (up to 97%)
- Internal NDMOS power switch
- Single pin on/off and brightness control using PWM
- Hysteretic PFM improves efficiency at light loads
- With Thermal/Soft start/LED open-short detect protection
- Only 4 External Components
- Up to 1Mhz switching frequency
- Typical 3% output current accuracy

Applications

- High power LED lighting
- Automotive LED lighting
- Low voltage industrial lighting
- LED back-up lighting
- Constant Current Source
TTP933

Package type

TTP933-BM8: MSOP8 (with Thermal Pad)
TTP933-CO8: SOP8 (with Thermal Pad)
TTP933-DO8: SOP8 (with Thermal Pad)
TTP933-EA5: SOT23-5
TTP933-FA6: SOT23-6
TTP933-GG5: SOT89-5
TTP933-HE5: TO252-5
TTP933-JO8: SOP8 (with Thermal Pad)

Pin Description

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>Drain of NDMOS switch</td>
</tr>
<tr>
<td>GND</td>
<td>Ground pad</td>
</tr>
<tr>
<td>DGND</td>
<td>Source of NDMOS</td>
</tr>
<tr>
<td>DIM</td>
<td>Dimming control pad</td>
</tr>
<tr>
<td>SEN</td>
<td>(I_{SENSE}) Connect resistor RS from this pin to VIN to define nominal average output current</td>
</tr>
<tr>
<td>VIN</td>
<td>Power pad</td>
</tr>
<tr>
<td>EN</td>
<td>Enable control signal, H:Active, L:Power down, Built-in pull high</td>
</tr>
</tbody>
</table>
.Application circuit

Typical application circuit

![Application Circuit Diagram]

>VIN
 Rs
 D1
 L1 68uH
 Cled
 10uF/50V

V_IN I_SENSE SW
 DIM TTP933 EN
 GND DGND

 absolutes maximum ratings

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>RATING</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_IN</td>
<td>0-33 (40V for 0.5 sec)</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_OUT</td>
<td>1.8</td>
<td>A</td>
</tr>
<tr>
<td>Sustaining Voltage at SW pin</td>
<td>V_SW</td>
<td>-0.5~33 (40V for 0.5 sec)</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation *</td>
<td>PD</td>
<td>1.4</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>SOP8</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSOP8 (thermal Pad)</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TO252</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT23-6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT23-5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT89-5</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>Rth(j-a)</td>
<td>89.3</td>
<td>□/W</td>
</tr>
<tr>
<td></td>
<td>SOP8</td>
<td>89.3</td>
<td>□/W</td>
</tr>
<tr>
<td></td>
<td>MSOP8 (thermal Pad)</td>
<td>86.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TO252</td>
<td>44.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT23-6</td>
<td>104.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT23-5</td>
<td>104.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOT89-5</td>
<td>86.2</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>Top</td>
<td>-40 □ - +85 □</td>
<td>□</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tsto</td>
<td>-55 □ - +150 □</td>
<td>□</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>Tj-MAX</td>
<td>150</td>
<td>□</td>
</tr>
</tbody>
</table>

* 2 layer The PCB size is 22mm*20mm
** Power Dissipation depend on PCB layout.
Electrical Characteristics

Test condition: $V_{IN}=12V$, $V_{OUT}=3.6V$, $L1=68uH$, $C_{IN}=C_{OUT}=10uF$, $T_a=25\degree C$; unless otherwise specified.

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>min</th>
<th>typ</th>
<th>Max</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>V_{IN}</td>
<td>$V_{IN}=5V~33V$</td>
<td>5</td>
<td>-</td>
<td>33</td>
<td>V</td>
</tr>
<tr>
<td>Operating current</td>
<td>I_{IN}</td>
<td>$V_{IN}=5V~33V$</td>
<td>1</td>
<td>2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power down current</td>
<td>I_{OFF}</td>
<td>$V_{IN}=5V~33V$, EN pin grounded</td>
<td>50</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Output current</td>
<td>I_{OUT}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>Output current Accuracy</td>
<td>$\Delta I_{OUT}/I_{OUT}$</td>
<td>150mA $\div I_{OUT} \div %$</td>
<td>\div</td>
<td>\div</td>
<td>$%$</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td>$V_{IN}=12V$, $I_{OUT}=350mA$, $V_{out}=10.8V$</td>
<td>97</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>SW Dropout voltage</td>
<td>V_{SW}</td>
<td>$I_{OUT}=1A$</td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Internal propagation delay</td>
<td>T_{PD}</td>
<td>-</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>nS</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V_{IH}</td>
<td>3.5</td>
<td>5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{IL}</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Sense threshold hysteresis</td>
<td>$V_{SENSEHYS}$</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Mean current sense threshold voltage</td>
<td>V_{SENSE}</td>
<td>-</td>
<td>95</td>
<td>100</td>
<td>105</td>
<td>mV</td>
</tr>
<tr>
<td>Switch on resistance</td>
<td>$R_{DS(ON)}$</td>
<td>$\frac{V_{SENSE}}{I_{OUT}}$</td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Minimum switch ‘ON’ time</td>
<td>T_{ONmin}</td>
<td>-</td>
<td>100</td>
<td>350</td>
<td>450</td>
<td>nS</td>
</tr>
<tr>
<td>Minimum switch ‘OFF’ time</td>
<td>T_{OFFmin}</td>
<td>-</td>
<td>100</td>
<td>350</td>
<td>450</td>
<td>nS</td>
</tr>
<tr>
<td>Recommended duty cycle range of switch</td>
<td>D_{SW}</td>
<td>-</td>
<td>0.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximum operating frequency</td>
<td>F_{MAX}</td>
<td>-</td>
<td>40</td>
<td>1000</td>
<td>KHz</td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown Threshold</td>
<td>T_{SD}</td>
<td>145</td>
<td>160</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>T_{SD-HYS}</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty cycle range of PWM signal applied to DIM pin</td>
<td>D_{yDIM}</td>
<td>$PWM \text{ frequency } = 1KHz$</td>
<td>0.01</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time of Output current</td>
<td>T_{r}</td>
<td>$V_{OUT}=3.6V$, $I_{OUT}=350mA$, $f_{DIM}=1kHz$, $D_{yDIM}=50%$</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time of Output current</td>
<td>T_{f}</td>
<td>$V_{OUT}=3.6V$, $I_{OUT}=350mA$, $f_{DIM}=1kHz$, $D_{yDIM}=50%$</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
Device description
The device, in conjunction with the coil (L1) and current sense resistor (RS), forms a selfoscillating continuous-mode buck converter.

Device operation (Refer to block diagram and Figure 1 - Operating waveforms)
Operation can be best understood by assuming that the DIM pin of the device is unconnected and the voltage on this pin (VDIM) appears directly at the (+) input of the comparator. When input voltage VIN is first applied, the initial current in L1 and RS is zero and there is no output from the current sense circuit. Under this condition, the (-) input to the comparator is at ground and its output is high. This turns MN on and switches the SW pin low, causing current to flow from VIN to ground, via RS, L1 and the LED(s). The current rises at a rate determined by VIN and L1 to produce a voltage ramp (VSENSE) across RS. The supply referred voltage VSENSE is forced across internal resistor R1 by the current sense circuit and produces a proportional current in internal resistors R2 and R3. This produces a ground referred rising voltage at the (-) input of the comparator. When this reaches the threshold voltage (Vref), the comparator output switches low and MN turns off. The comparator output also drives another NMOS switch, which bypasses internal resistor R3 to provide a controlled amount of hysteresis. The hysteresis is set by R3 to be nominally 15% of VADJ.

When MN is off, the current in L1 continues to flow via D1 and the LED(s) back to VIN. The current decays at a rate determined by the LED(s) and diode forward voltages to produce a falling voltage at the input of the comparator. When this voltage returns to VADJ, the comparator output switches high again. This cycle of events repeats, with the comparator input ramping between limits of Vref ± 15%.

2013/08/23 Page : 6—25 Ver. : 1.2
Switching thresholds

With $V_{ADJ} = V_{REF}$, the ratios of R_1, R_2 and R_3 define an average V_{SENSE} switching threshold of 100mV (measured on the $ISENSE$ pin with respect to VIN). The average output current I_{OUTnom} is then defined by this voltage and RS according to:

$I_{OUTnom} = \frac{100mV}{RS}$

Nominal ripple current is $\pm15mV/RS$

![Figure 1-Operating waveforms](image)
1. Typical Performance Characteristics

Efficiency vs. input voltage @L=22uH, I_{OUT}=384mA

Efficiency vs. input voltage @L=68uH, I_{OUT}=384mA

Efficiency vs. input voltage @L=22uH, I_{OUT}=769mA
Efficiency vs. input voltage @L=68uH, IOUT=769mA

Efficiency vs. input voltage @L=22uH, IOUT=1000mA

Efficiency vs. input voltage @L=68uH, IOUT=1000mA
2. Efficiency vs. LED Cascaded Number at Various Input Voltage

Efficiency vs. LED cascaded number @L=22uH, I_{OUT}=384mA

Efficiency vs. LED cascaded number @L=68uH, I_{OUT}=384mA

Efficiency vs. LED cascaded number @L=22uH, I_{OUT}=769mA
Efficiency vs. LED cascaded number @L=68uH, I_{OUT}=769mA

Efficiency vs. LED cascaded number @L=22uH, I_{OUT}=1000mA

Efficiency vs. LED cascaded number @L=68uH, I_{OUT}=1000mA
3. **Output Current vs. Input Voltage at Various LED Cascaded Number**

Output current vs. input voltage @L=22uH, I\text{OUT}=384mA

Output current vs. input voltage @L=68uH, I\text{OUT}=384mA

Output current vs. input voltage @L=22uH, I\text{OUT}=769mA
Output current vs. input voltage @L=68uH, I_{OUT}=769mA

Output current vs. input voltage @L=22uH, I_{OUT}=1000mA

Output current vs. input voltage @L=68uH, I_{OUT}=1000mA
4. Output Current vs. Input Voltage at Various Inductors

Output current vs. input voltage @1-LED in cascaded, $I_{OUT}=384mA$

Output current vs. input voltage @2-LED in cascaded, $I_{OUT}=384mA$

Output current vs. input voltage @3-LED in cascaded, $I_{OUT}=384mA$
5. Output Current vs. LED Cascaded Number at Various Input Voltage

Output current vs. LED cascaded number @L=22uH, I_{OUT}=384mA

Output current vs. LED cascaded number @L=68uH, I_{OUT}=384mA

Output current vs. LED cascaded number @L=22uH, I_{OUT}=769mA
Output current vs. LED cascaded number @L=68uH, I_{OUT}=769mA

6. **Output Current vs. LED Cascaded number at Various Inductor**

Output Current vs. LED Cascaded number @VIN=12V, I_{OUT}=384mA

Output Current vs. LED Cascaded number @VIN=24V, I_{OUT}=384mA
7. Switching Frequency vs. LED Cascaded Number at Various Inductor

Switching Frequency vs. LED Cascaded Number @VIN=12V, IOUT=384mA

Switching Frequency vs. LED Cascaded Number @VIN=24V, IOUT=384mA

Switching Frequency vs. LED Cascaded Number @VIN=30V, IOUT=384mA
8. **Dimming and switching waveforms**

Dimming waveform\((V_{IN}=12V, R_{SEN}=0.27 \, \Omega, \, 3\text{-LED})\)

Switching waveform\((V_{IN}=12V, R_{SEN}=0.27 \, \Omega, \, 3\text{-LED})\)
Application notes

Setting nominal average output current with external resistor RS
The nominal average output current in the LED(s) is determined by the value of the external current sense resistor (RS) connected between VIN and Iout and is given by:

\[I_{OUT\text{nom}} = 0.1 / R_S \]

for \(R_S \geq 0.1 \Omega \)

Nominal ripple current is ±15mV/Rs

The table below gives values of nominal average output current for several preferred values of current setting resistor (RS) in the typical application circuit shown on page 1:

<table>
<thead>
<tr>
<th>RS(Ω)</th>
<th>Nominal average output current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1000</td>
</tr>
<tr>
<td>0.13</td>
<td>760</td>
</tr>
<tr>
<td>0.15</td>
<td>667</td>
</tr>
</tbody>
</table>

Dimming
A Pulse Width Modulated (PWM) signal with duty cycle DPWM can be applied to the DIM pin. A logic low (below 0.5V) at DIM will disable the internal MOSFET and turn off the current flow to the LED array. An internal pull-high circuit ensures that The TTP933 is ON when DIM pin is unconnected.

Open / short circuit LED protection
When any LED is open-circuit, the output current will be turned off. When any LED is short-circuit, the output current will be limited to its preset value.

Over Temperature protection
When the junction temperature over range, TTP933 will turn off output current.

Minimum Input Voltage
The Minimum Input Voltage is the sum of the voltage drops on \(R_{SEN} \), DCR of L1, \(R_{ds(ON)} \) of Internal MOS switch and the total forward voltage of LEDs \(V_{LED} \).

\[V_{in} = V_{RS} + V_{LED} + V_{L1} + V_{SW} \]

Design Consideration:

Switching Frequency
For better output current accuracy, the switching frequency should be determined by Minimum on/off time SW waveform.

\[F_{SW} = (1 - D) / T_{OFF,MIN}, \text{ when the duty cycle is larger than 0.5} \]
\[F_{SW} = D / T_{ON,MIN}, \text{ when the duty cycle is smaller than 0.5} \]
The switching frequency is related to efficiency (better at low frequency), the size/cost of components, and the amplitude of output ripple voltage and current (smaller at high frequency). The slower switching frequency comes from the large value of inductor. In many applications, the Sensitivity of EMI limits the switching frequency. The switching frequency can be ranged from 40Khz to 1.0Mhz.

LED Ripple Current

A LED constant current driver, is designed to control the current through the cascaded LED, instead of the voltage across it. Higher LED ripple current allows the use of smaller inductance, smaller output capacitance and even without an output capacitor. The advantages of higher LED ripple current are to minimize PCB size and reduce cost because of no output capacitor. Lower LED ripple current requires large induct and output capacitor. The advantages of lower LED ripple current are to extend LED life time and to reduce heating of LED. The recommended ripple current is From 5 % to 20% of normal LED output current.

Capacitor selection

A low ESR capacitor should be used for input decoupling, as the ESR of this capacitor appears in series with the supply source impedance and lowers overall efficiency. This capacitor has to supply the relatively high peak current to the coil and smooth the current ripple on the input supply.

A minimum value of 4.7uF is acceptable if the input source is close to the device, but higher values will improve performance at lower input voltages, especially when the source impedance is high. The input capacitor should be placed as close as possible to the IC. For maximum stability over temperature and voltage, capacitors with X7R, X5R, or better dielectric are recommended. Capacitors with Y5V dielectric are not suitable for decoupling in this application and should NOT be used. A suitable Murata capacitor would be GRM42-2X7R475K-50.

Inductor selection

The inductance is determined by two factors: the switching frequency and the inductor ripple current. The calculation of the inductance, L1, can be described as

\[
L1 > \left(\frac{VIN-VOUT-VSEN-(Rds(ON)x IOUT))x D}{fswx IL}\right)
\]

Higher values of inductance are recommended at higher supply voltages in order to minimize errors due to switching delays, which result in increased ripple and lower efficiency. Higher values of inductance also result in a smaller change in output current over the supply voltage range. (See graphs). The inductor should be mounted as close to the device as possible with low resistance connections to the SW and V IN pins.

The chosen coil should have a saturation current higher than the peak output current and a continuous current rating above the required mean output current.

The inductor value should be chosen to maintain operating duty cycle and switch 'on'/'off' times within the specified limits over the supply voltage and load current range.

\[
\text{Switch on time} \quad T_{on} = \frac{\Delta I}{(VIN-VLED-I_{avg}(RS+rL+Rsw))}
\]

\[
\text{Switch off time} \quad T_{off} = \frac{\Delta I}{(VLED+VD+I_{avg}(RS+rL))}
\]
Where

L is the coil inductance
r_L is the coil resistance
R_S is the current sense resistance
I_{avg} is the required LED current
ΔI is the coil peak-peak ripple current \{Internally set to 0.3 x I_{avg}\}
V_{IN} is the supply voltage
V_{LED} is the total LED forward voltage
R_{SW} is the switch resistance
V_D is the diode forward voltage at the required load current

Diode selection :

For maximum efficiency and performance, the rectifier (D1) should be a fast low capacitance Schottky diode with low reverse leakage at the maximum operating voltage and temperature. They also provide better efficiency than silicon diodes, due to a combination of lower forward voltage and reduced recovery time. It is important to select parts with a peak current rating above the peak coil current and a continuous current rating higher than the maximum output load current. It is very important to consider the reverse leakage of the diode when operating above 85°C. Excess leakage will increase the power dissipation in the device and if close to the load may create a thermal runaway condition. The higher forward voltage and overshoot due to reverse recovery time in silicon diodes will increase the peak voltage on the SW output. If a silicon diode is used, care should be taken to ensure that the total voltage appearing on the SW pin including supply ripple, does not exceed the specified maximum value.
Package Information

SOT23-6 (TTP933-FA6)

TO252-5 (TTP933-HE5)
MSOP8 (TTP933-BM8)

SOP8 (TTP933-CO8, TTP933-DO8, TTP933-JO8)
ORDER INFORMATION
1. Package form: TTP933-BM8, TTP933-CO8, TTP933-DO8, TTP1933-EA5, TTP933-FA6,
 TTP933-GG5, TTP933-HE5, TTP933-JO8
2. Chip form: TCP933

Revise History
2013/03/05: Original version V1.0.
2013/05/02: Modify Package Information V1.1.
2013/08/23: Modify Package Information V1.2.