

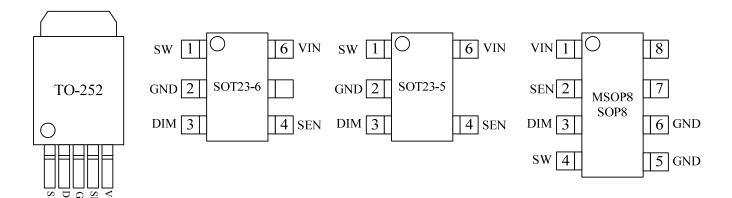
IC 1A LED 內部開關驅動器

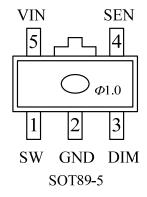
概述

- TTP932 為一高效率、恆定電流、連續模式的電感降壓轉換器,設計用來驅動恆定電流給高功率 LED(單或多),只有 4 個外部元件,TTP932 可在輸入電壓寬至 5V 到 33V 工作,提供高達 1A 的外部可調輸出電流。
- TTP932 特別設計用於 PFM 控制器,可增強效率至高達 95%,可藉由外部修改電阻來調整輸出電流,並可透過在 DIM 接腳加上外部控制訊號,進行控制,DIM 接腳亦可接受 PWM 波形進行調光。

此外,為確保系統可靠度,TTP932內建有過熱保護,以及LED開路短路保護,以免系統受損。

特點


- 1A 輸出電流
- 寛的輸入電壓範圍:5V ~ 33V
- 高效率(高達 95%)
- 内置 NDMOS 功率切換
- PWM 單一接腳控制 開/關及亮度
- 遲滯式 PFM,改善輕載時的效率
- 具高溫、軟啟動、LED 開-短路偵測保護
- 只有4個外部元件
- 高達 1Mhz 切換頻率
- 典型 3%輸出電流精確度


應用範圍

- 高功率 LED 照明
- 車輛 LED 照明
- 低電壓工業照明
- LED 背光照明
- 恆定電流源

封裝類型

SOT23-6: TTP932B

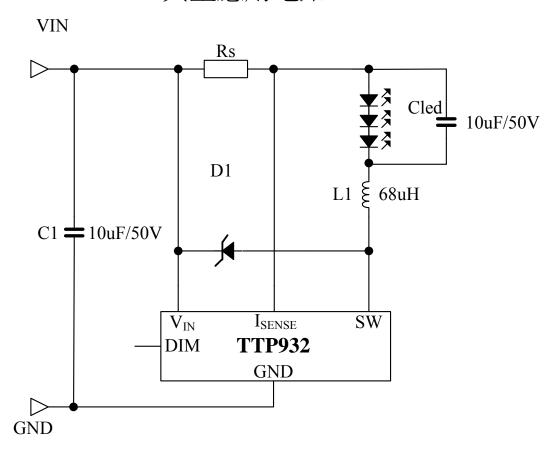
TO252-5: TTP932C

MSOP8 (附導熱片): TTP932D

SOP8 : TTP932E

SOT89-5: TTP932F1

SOT23-5: TTP932J


腳位說明

腳位名稱	腳位定義			
SW	NDMOS 開關汲極(Drain of NDMOS switch)			
GND	電源負極			
DIM	調光控制接腳			
ISEN	由此接腳將電阻RS連接至VIN,定義平均輸出電流			
VIN	電源正極			

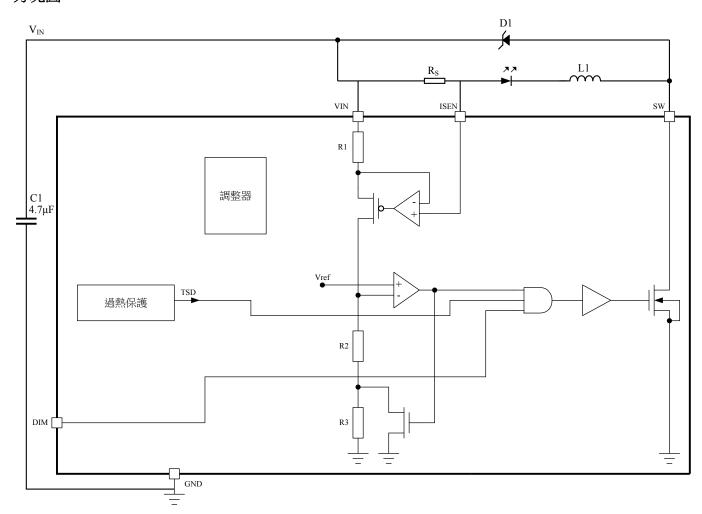
應用電路

典型應用電路

電氣特性

• 最大絕對額定值

參 數		符號	值	單位	
工作電壓		VIN	0-33 (40V 持續 0.5 秒)	V	
輸出電流		IOUT	1.25	Α	
SW 腳位上的	特續電壓	VSW	-0.5~33(40V 持續 0.5 秒)	V	
	SOP8		1.4		
	MSOP8 (thermal PAD)		1.45		
功率消耗*	TO252	PD	2.8	w	
切 学 府 杜	SOT23-6	7 20	1.2	- VV	
	SOT23-5		1.2		
	SOT89-5		1.45		
	SOP8		89.3		
	MSOP8 (thermal PAD)		86.2	°C /\\	
熱阻	TO252	Rth (j-a)	44.6		
然他	SOT23-6	Tuil (j-a)	104.2	- °C/W	
	SOT23-5		104.2		
	SOT89-5		86.2		
工作溫度		Тор	-40℃- +85℃	$^{\circ}\mathbb{C}$	
儲存溫度		Tsto	-55°C- +150°C	$^{\circ}\mathbb{C}$	
內部溫度(Junction Temperature)		Tj-MAX	150	$^{\circ}\mathbb{C}$	
* 雙層 PCB 尺寸為 22mm*20mm					


^{**} 功率消耗取決於 PCB 佈局

DC / AC 特性: (測試條件: VIN=12V、V_{OUT=}3.6V、L1=68uH、CIN=C_{OUT=}10uF、Ta= 25 ℃; 除非另有說明。)

參 數	符號	測試條件	最小值	典型值	最大值	單位
工作電壓	Vin		5	-	33	V
工作電流	lin	V _{IN} = 5V~33V	-	1	2	mA
輸出電流	I _{OUT}		-	-	1	Α
輸出電流精確度	$\Delta I_{OUT}/I_{OUT}$	150mA≦I _{OUT} ≦1A	-	±3	±5	%
轉換效率		V _{IN} =12V \ I _{OUT} =350mA \ V _{out} =10.8V	-	95	-	%
SW 電壓差	ΔVsw	Iout=1A	-	0.5	-	V
內部傳送延遲時間	T _{PD}		100	200	300	NS
輸入電壓	ViH		3.5	-	5	V
	VIL		-	-	0.5	V
傳感測遲滯閥值	VSENSEHYS		-	±15	-	%
電流平均值檢電壓測門限	VSENSE		95	100	105	Μv
Switch 導通阻抗	RDS(ON)	V _{IN} =12V \ I _{OUT=} 350mA \ V _{out} =10.8V	-	0.5	1	Ω
Switch 最小導通時間	Tonmin		100	350	450	ns
Switch 最小截止時間	Toffmin		100	350	450	ns
推薦工作站空比範圍	Dsw		0.2	-	0.8	-
最大工作頻率	Freqmax		40	-	1000	KHz
過溫開關保護	Tsp		145	160	175	$^{\circ}\!\mathbb{C}$
熱保護遲滯	TsD-HYS		-	20		$^{\circ}\mathbb{C}$
加在DIM腳位上的PWM信號 的占空比範圍	Dutуым	PWM 頻率 = 1KHz	0.01	-	1	-
輸出電流上升時間	Tr	Vout= 3.6V \ I _{OUT=} 350mA \ fbim=1kHz \ Dutybim=50%	-	20	-	ns
輸出電流下降時間	Tf	Vout= 3.6V \ I _{OUT=} 350mA \ fbim=1kHz \ Dutybim=50%	-	20	-	ns

方塊圖

裝置說明

裝置結合線圈(L1)及電流感測電阻(RS),構成自振盪的連續模式降壓電源轉換器。

I.操作流程(參閱方塊圖及圖 **1-**操作波形)

了解操作的最佳方式,是假設裝置的 DIM 接腳是未連接的,且在此腳位(VDIM)上的電壓,直接出現在比較器的(+)輸入上。

首次施加輸入電壓 VIN 時,L1 和 RS 的初始電流為零,且電流檢測電路的沒有輸出,在此情況下,到比較器的(-)輸入是低電平的且其輸出很高,這使得 MN 打開,並將 SW 接腳切換至低電平,造成電流從 VIN 經由 RS、L1 和 LED(s)流向接地,由 VIN 和 L1 決定電流上升率,以產生通過 RS 的電壓斜度(VSENSE)。利用電流感測迴路將供應的參照電壓 VSENSE 推送通過內部電阻 R1,並在電阻 R2 和 R3 上產生一個與電流成比例上升的的電壓,這會在比較器的(-)輸入產生一接地參照上升電壓,當此超過門檻電壓(Vref),比較器輸出切換為低電平,且 MN 關閉,比較器輸出亦驅動另一個 NMOS 開關,其繞過內部電阻 R3,以提供一受控制的滯後量,R3 設定的滯後為 VADJ 定義值的 15%。

當 MN 關閉時,L1 中的電流繼續經由 D1 及 LED(s)流回 VIN,電流下降率由 LED(s)和二極體的順向電壓決定,以在比較器的輸入上產生下降的電壓,當此電壓回到 VADJ 時,比較器輸出再次切換至高電平,此事件週期會重複,且比較器輸入會在 Vref ± 15%的範圍內斜向上或斜向下(ramping)。

Ⅱ. 開關切換閥值

當 VADJ = VREF 時,R1、R2 和 R3 的比值定義出 100mV 的平均 VSENSE 切換門檻值(在 ISENSE 腳位上相對於 VIN 的量測值),接著,即可用此電壓和 RS,定義平均輸出電流 IOUTnom,依據:

IOUTnom = 100mV/RS

額定漣波電流(ripple current)為 ± 15mV/RS

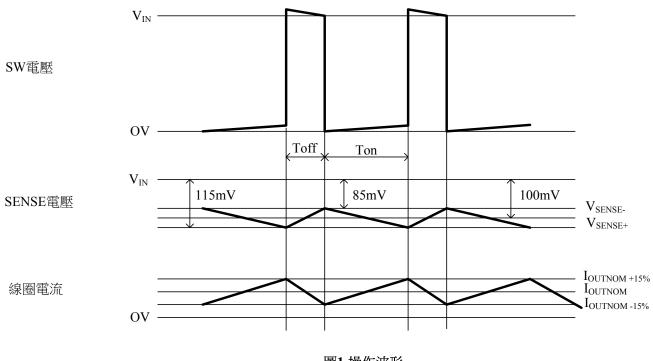
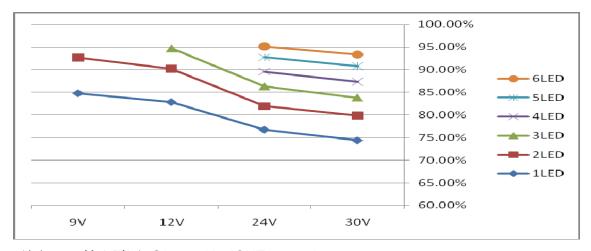
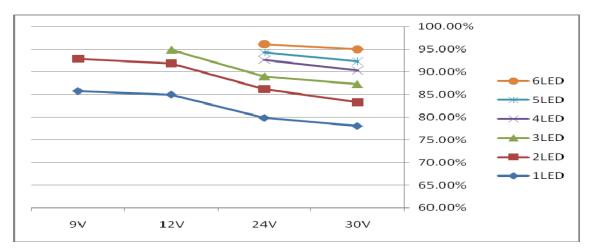
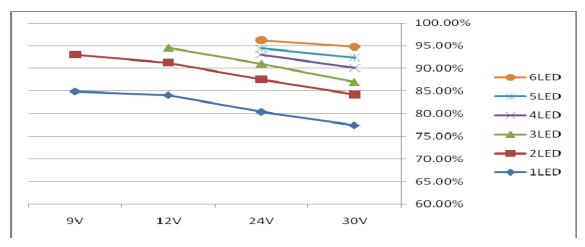



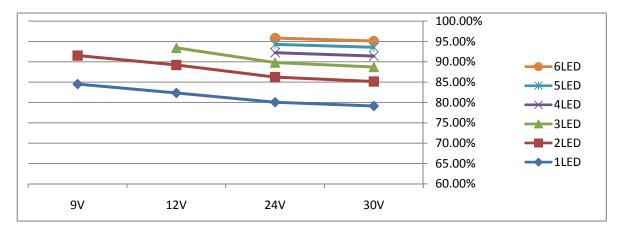
圖1-操作波形


Ⅲ. 典型性能特徵

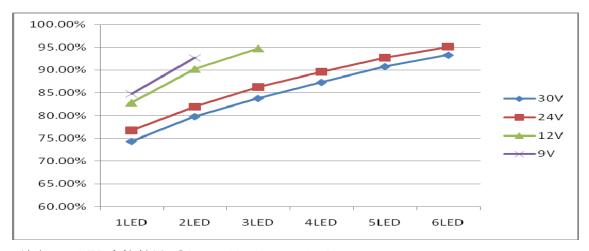
1. 不同 LED 串接數量的效率 vs. 輸入電壓

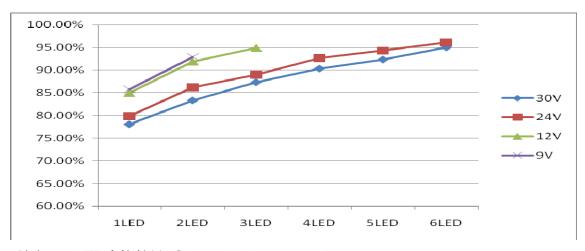


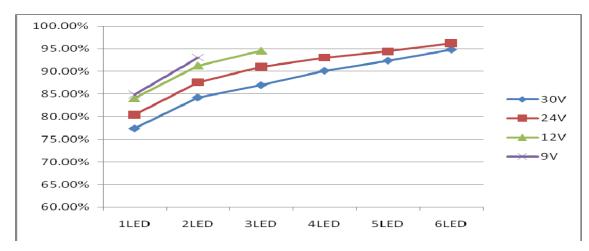
效率 vs. 輸入電壓 @L=22uH、IOUT=370mA



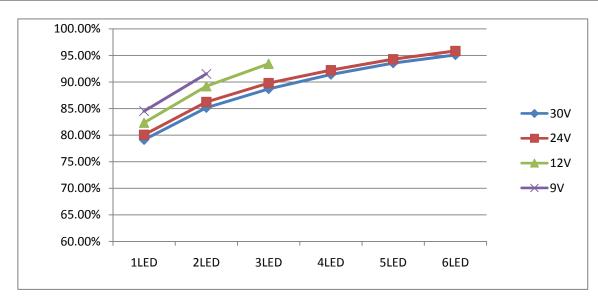
效率 vs. 輸入電壓 @L=68uH、I_{OUT}=370mA


效率 vs. 輸入電壓 @L=100uH、I_{OUT}=370mA

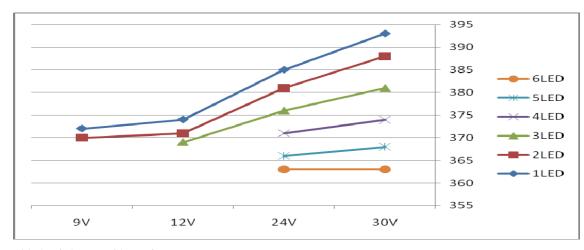

效率 vs. 輸入電壓 @L=68uH、I_{OUT}=770mA


2. 不同輸入電壓下的效率 vs. LED 串接數量

效率 vs. LED串接數量 @L=22uH、I_{OUT}=370mA



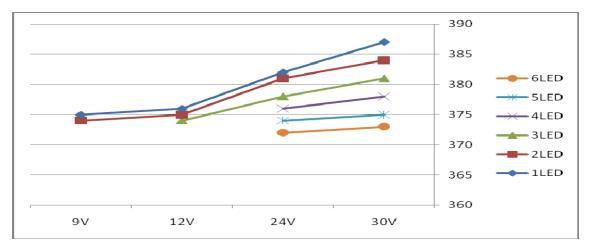
效率 vs. LED串接數量 @L=68uH、I_{OUT}=370mA


效率 vs. LED串接數量 @L=100uH、I_{OUT}=370mA

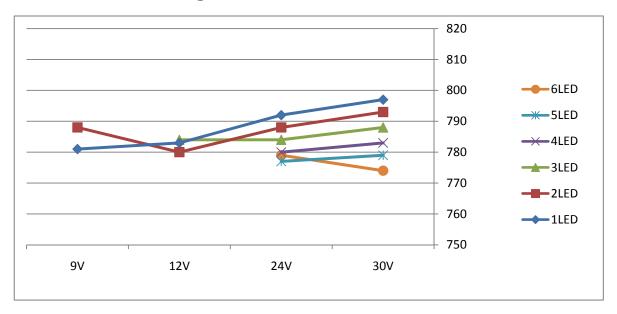


效率 vs. LED串接數量 @L=68uH、I_{OUT}=770mA

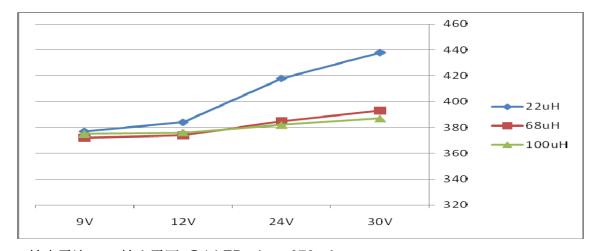
3. 不同 LED 疊接數量的輸出電流 vs. 輸入電壓



輸出電流 vs. 輸入電壓 @L=22uH、I_{оит}=370mA

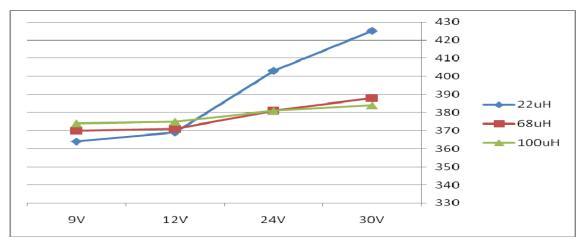


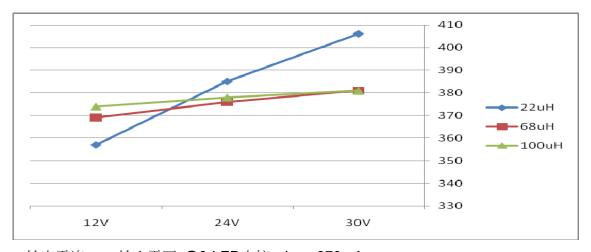
輸出電流 vs. 輸入電壓 @L=68uH、I_{оит}=370mA



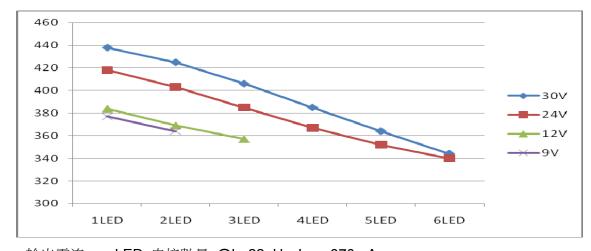
輸出電流 vs .輸入電壓 @L=100uH、I_{OUT}=370mA

輸出電流 vs. 輸入電壓 @L=68uH、I_{OUT}=770mA

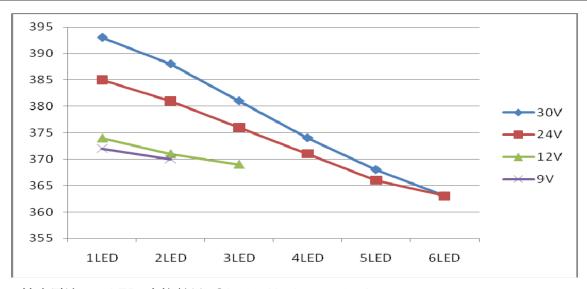

4. 不同電感元件下的輸出電流 vs. 輸入電壓


輸出電流 vs. 輸入電壓 @1-LED、I_{OUT}=370mA

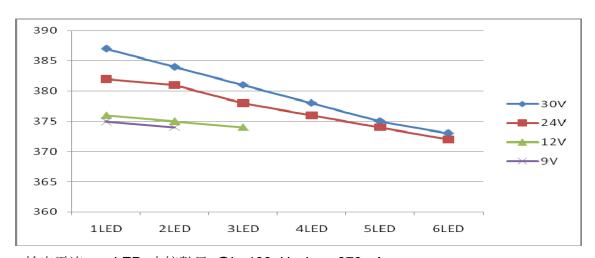
2015/11/30 Page 10 of 21 Version : 3.3



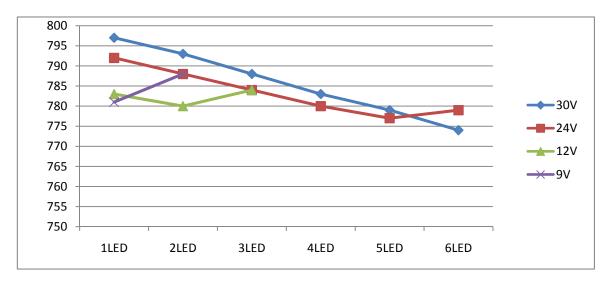
輸出電流 vs. 輸入電壓 @2-LED串接、I_{OUT}=370mA


輸出電流 vs. 輸入電壓 @3-LED串接、I_{OUT}=370mA

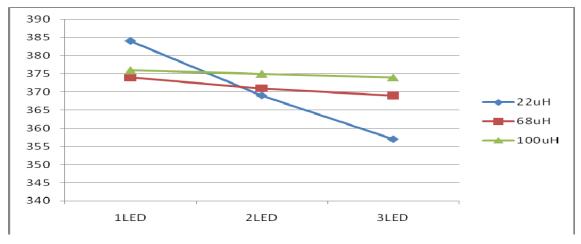
5. 不同輸入電壓下的輸出電流 vs. LED 串接數量

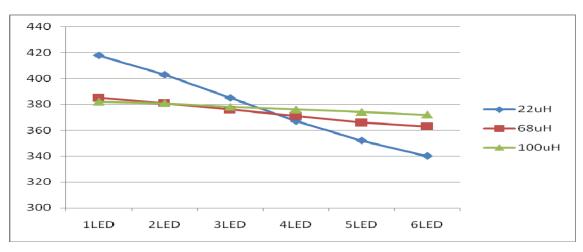


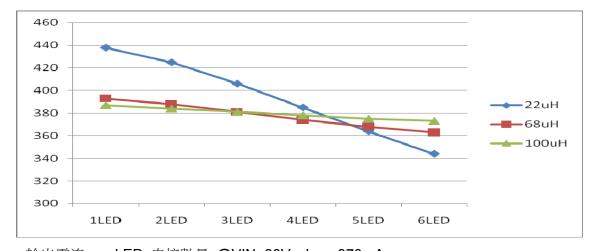
輸出電流 vs. LED 串接數量 @L=22uH、I_{OUT}=370mA



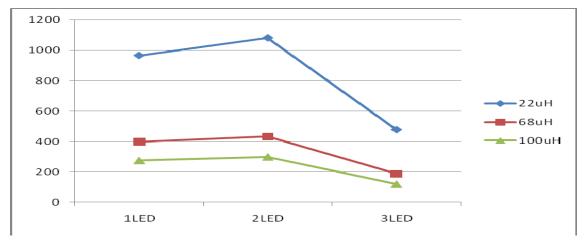
輸出電流 vs. LED 串接數量 @L=68uH、I_{OUT}=370mA

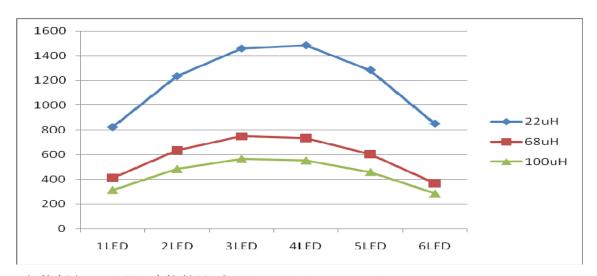

輸出電流 vs. LED 串接數量 @L=100uH、I_{OUT}=370mA

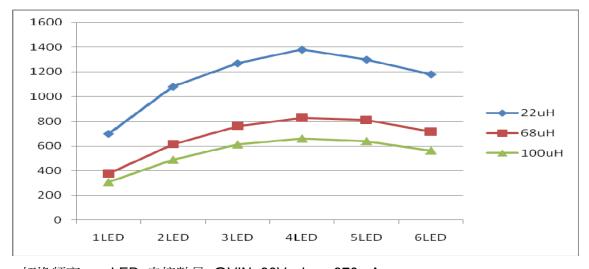

輸出電流 vs. LED 串接數量 @L=68uH、I_{OUT}=770mA


6. 不同電感元件(inductor)下的輸出電流 vs. LED 串接數量

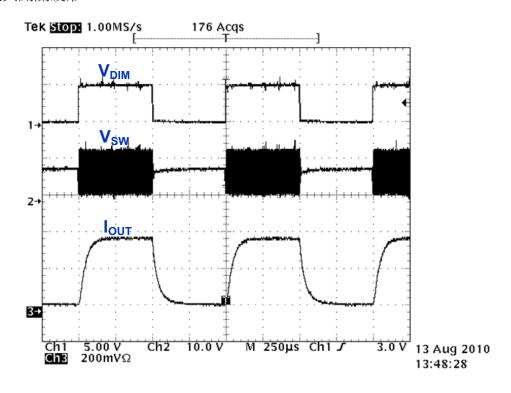
輸出電流 vs. LED 串接數量 @VIN=12V、I_{OUT}=370mA

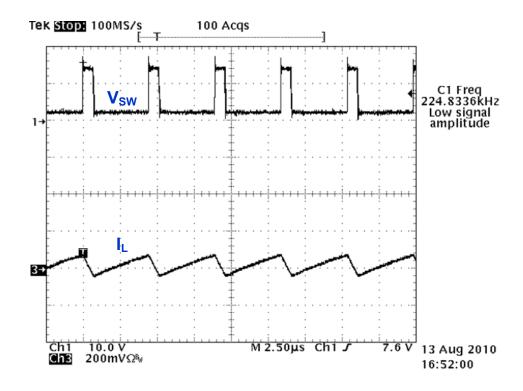

輸出電流 vs. LED 串接數量 @VIN=24V、I_{OUT}=370mA


輸出電流 vs. LED 串接數量 @VIN=30V、I_{OUT}=370mA


7. 不同電感元件下的切換頻率 vs. LED 疊接數量

切換頻率 vs. LED 串接數量 @VIN=12V、I_{OUT}=370mA


切換頻率 vs. LED 串接數量 @VIN=24V、I_{OUT}=370mA


切換頻率 vs. LED 串接數量 @VIN=30V、I_{OUT}=370mA

8. 調光與開關波形

調光波形(V_{IN}=12V、R_{SEN}=0.27Ω、3-LED)

開關波形(V_{IN} =12V、 R_{SEN} =0.27 Ω 、3-LED)

IV. 應用注意事項

用外部電阻 RS 設定平均輸出電流

利用連接在 VIN 與 lout 間的外部電流感測電阻 (RS) 值,決定 LED(s) 的額定平均輸出電流,

且: IOUTnom = 0.1/RS [若 RS $\geq 0.1\Omega$]

漣波電流為±15mV/RS

下表所示為第 1 頁所列之典型應用電路中,額定平均輸出電流值對應之幾個較適合的電流設定電阻 (RS) 值:

RS(Ω) 額定平均輸出電流(mA)		
0.1	1000	
0.13	760	
0.15	667	

1. 調光

具工作週期之脈衝寬度調變(PWM)訊號的 DPWM,可施加在 DIM 接腳上。

DIM 的邏輯低 (logic low) (低於 0.5V) 會停用內部 MOSFET,並關閉流至 LED 陣列的電流。 內部提升電路 (pull-high circuit) 確保當 DIM 接腳未連接時,TTP932 為開 (ON)。

2. 開路/短路 LED 保護

當任一 LED 為開路時,輸出電流會關閉。

當任一 LED 短路時,會限制輸出電流為其預設值。

3. 過熱保護

當接合面溫度超出範圍,TTP932 會關閉輸出電流。

4. 最低輸入電壓

最低輸入電壓為 R_{SEN} 、L1 的 DCR、內部 MOS 開關的 Rds(ON)上之電壓降與 LEDs 的總順向電壓 V_{LED} 之總和。

Vin=VRS+VI FD+VI 1+VSW

5. 設計考量

切換頻率:

為了較好的輸出電流精確度,應由最小開/關時間 SW 波形決定切換頻率

Fsw=(1-D)/Toff,MIN ,當工作週期大於 0.5 (D = Vout / Vin)

或 Fsw=D/Ton,min , 當工作週期小於 0.5

切換頻率與效率(低頻時較好)、元件的大小/成本、以及輸出漣波電壓和電流的振幅有關(高 頻時較小)。

較慢的切換頻率來自大的電感元件值。在許多應用中,EMI的敏感度限制了切換頻率。 切換頻率的範圍可從 40kHz 到 1.0MHz。

LED 漣波電流:

LED 固定電流驅動器是設計用來經由疊接 LED,而非通過的電壓來控制電流。

較高的 LED 漣波電流允許使用較小的電感、較小的輸出電容,甚至可不需要輸出電容器,較高 LED 漣波電流的優點是將 PCB 尺寸最小化,並降低成本,因為沒有輸出電容器。

較低的 LED 漣波電流需要較大的電感和輸出電容器,較低的 LED 漣波電流是為了延長 LED 的使用壽命,並降低 LED 的溫升。

建議的漣波電流為正常 LED 輸出電流的 5%到 20%。

6. 選擇電容器

應使用低 ESR 電容器,進行輸入解耦(input decoupling),因為此電容器是與電源阻抗串聯出現的,且會降低整體效率,此電容器必須供應相對高的峰值電流給線圈,並使輸入電源上的電流漣波平滑。

若輸入源靠近裝置,則 4.7uF 的最小值是可接受的,但較高的數值可提升較低輸入電壓的表現, 特別是在高電源阻抗時,輸入電容器應儘可能放在靠近 IC 的地方。

為了隨溫度與電壓變化的最大穩定性,建議使用 X7R、X5R 或更好的電介質電容器。

此應用中,不適合用具 Y5V 電介質電容器進行解耦,故不應使用。

GRM42-2X7R475K-50 是合適的 Murata 電容器。

7. 選擇電感元件

電感 L1 計算如下:

L1>(VIN-VOUT-VSEN-(Rds(ON)X IOUT))X D/(fswx ΔIL)

較高供應電壓時,建議採用較高的電感值,以將切換延時的誤差降至最低;其可能導致增加漣波及較低的效率。較高的電感值亦會產生供應電壓範圍內、較小的輸出電流變化。(如圖)。電感元件應儘可能放置在靠近裝置的地方,並以低電阻連接至 SW 和 V_{IN} 接腳。

應選擇飽和電流高於峰值輸出電流,且連續電流額定值高於所需之平均輸出電流的線圈。

應選擇能保持操作工作週期,且在供應電壓及負載電流範圍內切換「開」/「關」時間在規定範圍內的電感元件值。

打開時間

Ton= $L\Delta I/(V_{IN}-V_{LED} - lavg (Rs + rL + Rsw))$ Toff= $L\Delta I/(V_{LED} + V_D + lavg (Rs + rL))$

其中

L 為線圈電感

rL 為線圈電阻

Rs 為電流感測電阻

lavg 為要求之 LED 電流

 ΔI 為線圈峰值-峰值漣波電流 $\{$ 內部設定為 $0.3 \times lavg\}$

Vin 為供應電壓

VLED 為總 LED 順向電壓

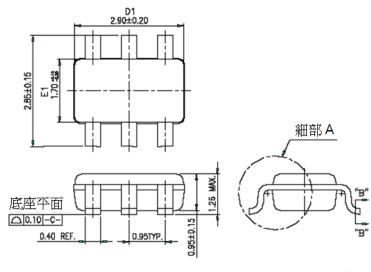
Rsw 為開關電阻

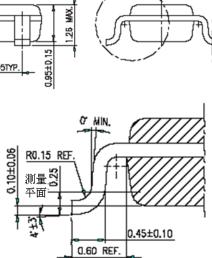
VD 為要求之負載電流下的二極體順向電壓

8. 選擇二極體

基於最大效率及性能,整流器(D1)應為在最大電壓及溫度下具低反向洩漏的快速低電容 Schottky 二極體,因為較低順向電壓與減少恢復時間的組合,其亦能提供優於矽二極體(silicon diodes)的效率,重要的是選擇峰值電流額定值高於峰值線圈電流、且連續電流額定值高於最大輸出負載電流的零件。

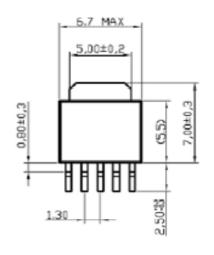
若在 85°C 以上操作時,考慮二極體的反向洩漏是很重要的,過高的洩漏會增加裝置內的功率 消耗,且若接近負載可能會創造熱失控條件(thermal runaway condition)。


較高的順向電壓以及因為矽二極體中反向恢復時間造成的過衝(overshoot),會增加 SW 輸出上的峰值電壓。


若使用矽二極體,應小心以確保出現在 SW 接腳上之含電源漣波(supply ripple)的總電壓,不超過規定的最大值。

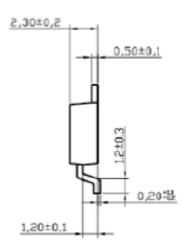
封裝配置

SOT23-6 (TTP932B)



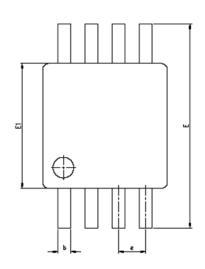
| 基底金屬 | 基底金屬 | 基底金屬 | 100 |

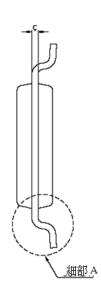
說明:

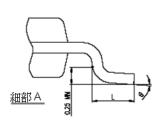

- 1. 尺寸 D1 & E1 不含模具突出。
- 2. 除非另有說明,所有引腳來自底座平面 的共面性應爲最大 0.1 (測試前)。
- 3. 除非另有說明,一般實際外觀規格係參 閱 TMC 的最終目視檢查規格。

TO252-5 (TTP932C)

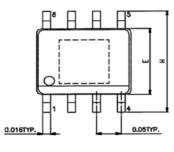
細部A

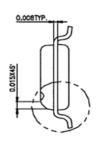

(S=32:1)

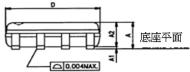


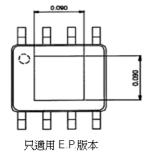


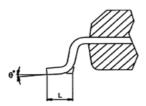
MSOP8 (TTP932D)


符號	尺寸(mm)		尺寸 (inch)			
15 ans .	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.81	1.02	1.10	0.032	0.040	D.043
A1	0.05		0.15	0.002		0.006
A2	0.76	88.0	D.95	0.030	0.034	0.037
Ь	0.28	0.30	0.38	0.011	0.012	0.015
С	0.13	0.15	0.23	0.005	0.006	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	0.114	0.118	D.122
ę	0.65 BASIC 0.02			26 BAS	IC	
L	0.40	0.55	0.70	0.016	0.022	0.028
0	۵	3'	6	0,	3*	6
JEDEC						

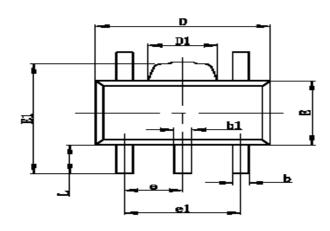

*說明:尺寸「D」不含模具突出或澆口毛邊。 模具突出和澆口毛邊每側不得超過 0.006 英吋(0.15 mm)。

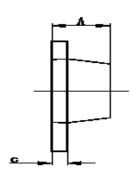

尺寸「E1」不含模其突出


模具突出每側不得超過 0.010 英吋 (0.25 mm)。

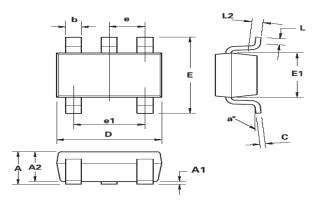

SOP8 (TTP932E)

符號	MIN.	MAX.
Α	0.053	0.069
A1	0.004	0.010
A2	_	0.059
D	0.189	0.196
E	0.150	0.157
Н	0.228	0.244
L	0.016	0.050
θ°	0	8


單位:英吋


說明:

- 4. JEDEC 外觀: MS-012 M/E.P. 版本: N/A
- 尺寸「D」不含模具溢料、突出或澆口毛邊。模具溢料、突出和澆口毛邊每側不得超過.15mm (.006 英吋)。
- 6. 尺寸「E」不含引腳間溢料或突出。引腳 間溢料或突出每側不得超過.25mm (.010 英吋)。


SOT89-5 (TTP932F1)

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.360	0.560	0.014	0.022	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.400	1.800	0.055	0.071	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
e	1.500TYP		0.060TYP		
e1	2.900	3.100	0.114	0.122	
L	0.900	1.100	0.035	0.043	

SOT23-5 (TTP932J)

DIM	Millimeters		Inc	hes	
	Min.	Max.	Min.	Max.	
Α	-	1.00	-	0.0393	
A1	0.01	0.10	0.0003	0.0039	
A2	0.84	0.90	0.0330	0.0354	
b	0.30	0.45	0.0118	0.0177	
С	0.12	0.20	0.0047	0.0078	
D	2.90 BSC		0.114 BSC		
E	2.80 BSC		0.110 BSC		
E1	1.60 BSC		0.062	BSC	
е	0.95 BSC		0.037	4 BSC	
e1	1.90 BSC		0.0748 BSC		
L	0.30	0.50	0.0118	0.0196	
L2	0.25 BSC		0.010 BSC		
a°	4°	12°	4°	12°	