Version: 1.1

3 keys Touch Pad Detector IC

Outline	2
Characteristic	2
Applications	2
Package Description	2
Pin Description	3
AC / DC Characteristics	4
Absolutely max. Ratings	4
D.C. Characteristics	4
A.C. Characteristics	4
Function Description	5
Output Indicator	5
Descriptions of Function	5
Notes of Caution	5
Application circuit	7
Ordering Information	9
Revision History:	9

Outline

Provide 3 touch-sensitive keys, binary (BCD) code output. Provide a low power consumption mode, which can be used in battery applications. It has excellent performance in waterproof and anti-interference!

Characteristic

- Operating voltage range : 2.7V 5.5V
- Operating current : 1.8mA (normal mode) ; 10 uA (sleep mode) @3.3V
- 3 touch-sensitive keys
- Enter the sleep mode without pressing the button for 4 seconds
- Provides binary coding (BCD) direct output interface (power on D1~D0/11)
- Sensitivity is adjustable through adjustment of the external capacitor connected to CAP pin. Sensitivity is higher with larger capacitance
- Waterproof and immersion proof. Key function is still effective even with water droplets covering the touch key panel

Applications

Suitable for use on all kinds of home appliances and entertainment products.

Package Description

	l	_		
K2	1		8	K1
CAP	2		7	K0
$\mathbf{D0}$	3		6	VDD
VSS	4		5	D1
	L			I

TTP277-AO8N

Pin Description

Pin NO	Pin Name	Туре	Pin Description
1	K2	I	Pin of touch key, connected in series with resistors of 100-1000 ohms, to enable high resistance to interference and electrostatics
2	САР		Capacitor used must be made of NPO material or X7R material Range of use: 6,800pF-33,000pF, the larger the capacitance the higher the sensitivity
3	D0	О	Binary bit code output D0 (open drain, Need pull-up resistor)
4	VSS	P	Negative terminal of power supply
5	D1	О	Binary bit code output D1
6	VDD	P	Positive terminal of power supply
7	К0	I	Pin of touch key, connected in series with resistors of 100-1000 ohms, to enable high resistance to interference and electrostatics
8	K1	I	Pin of touch key, connected in series with resistors of 100-1000 ohms, to enable high resistance to interference and electrostatics

- I INPUT
- O OUTPUT
- P POWER

AC / DC Characteristics

Absolutely max. Ratings

ITEM	SYMBOL	RATING	UNIT
Operating Temperature	Тор	- 40∼ +85	$^{\circ}\! \mathbb{C}$
Storage Temperature	Tsto	-50 ~ +125	$^{\circ}\! \mathbb{C}$
Supply Voltage	VDD	5.5	V
Voltage to input terminal	Vin	Vss-0.3 to Vdd+0.3	V

D.C. Characteristics

(Condition : Ta= 25 $\,\pm\,$ 3 $\,^{\circ}\!\text{C}\,$, RH $\,\leq\,$ 65 % , VDD =+ $\,$ 5V , VSS=0V)

	Symbol	Condition	Min.	Тур.	Max.	Unit
Item	· ·					
Operating voltage	VDD		2.7	5	5.5	V
Operating current	I _{OPR1}	VDD=5V		3		mA
Input low voltage for	$V_{\rm IL1}$		0		0.3VD	V
input and I/O port					D	
Input high voltage for	V_{IH1}		0.7VD		VDD	V
input and I/O port			D			
Output port source	I_{OH1}	V _{OH} =0.9VDD, @5V		4		mA
current						
Output port sink	I_{OL1}	V _{OL} =0.1VDD, @5V		8		mA
current						

A.C. Characteristics

Item	Symbo	Condition	Min.	Тур.	Max.	Unit
	1					
System clock	f_{SYS1}	OSC @5v		4		MHz
Low Voltage Reset	V_{lvr}		2.0	2.2	2.4	V

Function Description

Output Indicator

Provides 3 keys of capacitive touch control, with output in the format of binary coding (BCD).

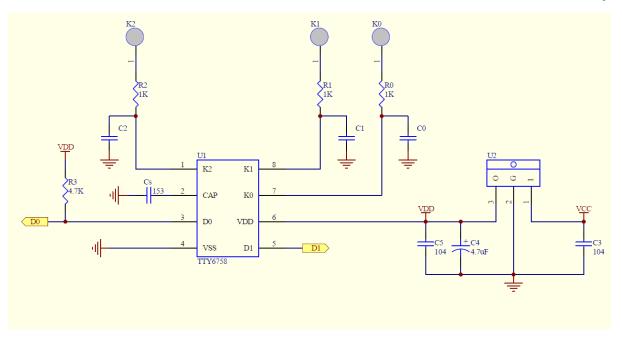
	Key	D1	D0
No Key	POWER ON	1	1
K0	Touch	0	0
K1	Touch	0	1
K2	Touch	1	0

Descriptions of Function

- 1. The state of the corresponding key output is within 50ms when the TTY6758 touch pad is pressed by a finger.
- 2. Output of the pressing of a single key is processed first. If K1 has acknowledged, other keys can only be acknowledged when K1 is released. Output of only one key can be sent out at the same time.
- 3. The idle-free function restores the system status if the effective output of pressed key remains on for over 10 seconds.
- 4. Function of environmental adaption changes the reference value according to the changes in ambient temperature and humidity to ensure normal key operation.
- 5. Capable of identifying water and finger touch. Key function is still effective even when immersed in water and with water droplets covering the touch pad. However, if a "water column" is formed on the touch pad, it has the equivalent effect of finger touch and will cause output from key press acknowledgment.
- 6. Please ground all unused keys to avoid false actions due to overly sensitive responses.

Notes of Caution

- 1. Relation of Cs capacitance and sensitivity:
 - 1. The smaller the Cs capacitance, the lower the touch sensitivity.
 - 2. The larger the Cs capacitance, the higher the touch sensitivity.
 - 3. Capacitance of Cs ranges from 6800pF (682) to 33000pF (333).
 - 4. Capacitor materials with small temperature coefficient and stable capacitance are needed for measurement of Cs capacitance. As a result, capacitors made of NPO or X7R are needed.


- 2. In the power layout, one has to divide the design by circuit blocks, where the touch IC has independent wiring connected to the positive terminal of the power supply. If there is no independent wiring, connect the touch circuit first before forming connections with other circuits. The same rule applies to the ground part, where there is independent wiring connected to the ground of the power supply. Namely, star grounding is used. Such method can avoid interference by other circuits and significantly improve the stability of the touch circuit.
- 3. Single side PCB design. It is recommended to use a sensing spring as the touch pad. It is best to use a spring with a cap and a larger cap enables better sensitivity.
- 4. If the double side PCB design is used, the touch pad can be circular or square by design. The common size is 12mm x 12mm. The IC wiring should be arranged on the other side of the touch pad. Meanwhile, thinner wire should be used and do not create excessively long wiring.
- 5. The PCB and the external cover must be sealed together securely. Otherwise, the capacitor dielectric will change, which affects the capacitance measurement and leads to instability. It is recommended to apply nonconductive glue such as 3M HBM series acrylic between the cover and PAD.
- 6. The overall stray capacitance must be minimized to increase the sensitivity. The wiring area between the touch IC pins and touch pad is not grounded on either the front or back. However, touch areas in the area outside to the sides of PCB must be covered by ground wiring as fences to isolate the capacitive interference from the sides. Only capacitance changes on top of the touch pad are accepted. The ground wire must be away from the touch area by at least 2mm. The distance between touch pads also needs to be at least 2mm to prevent parallel wiring of different pads from getting too close. This way the stray capacitance between the touch PAD and ground can be minimized, which helps improve the sensitivity of the product.
- 7. The principle of capacitive touch sensing works with treating the finger as the conductor. When the finger approaches the touch pad, it will increase the grounding paths and increase the stray capacitance. By checking the changes of capacitance, one can determine whether there is any finger touch. The change of the capacitance formed between the touch pad and finger is inversely proportional to the thickness of the touch cover and is proportional to the area of touch pad covered by the finger.
- 8. The cover material can also affect the sensitivity. Panels made of different materials have different dielectric constants. For example, the dielectric constant of glass is greater than that of organic glass (acrylic), which is greater than plastic. Given the same thickness, the larger the dielectric constant, the larger the capacitance formed between the finger and touch pad. Larger changes of capacitance in the measurement means easier press key acknowledgment and higher sensitivity.

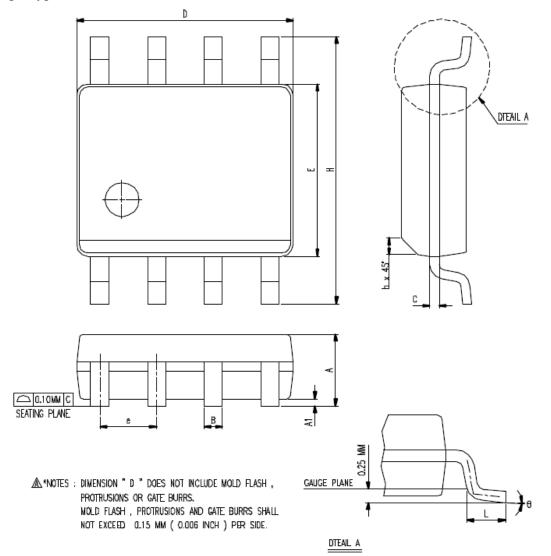
2020/10/09 Page 6 of 9 Version: 1.1

Application circuit

Reference only

Relation of Cs external capacitor and acrylic thickness:

For a sensing spring with an iron cap and 12mm in diameter, the relation of acrylic thickness and CS capacitor is described below:


Acrylic thickness (mm)	CS	Sensitivity setting
1	682	16
2	103	16
3	153	16
4	223	16
5	223	16
10	333	16

This table is for reference only and subject to changes caused by PAD size and PCB layout.

Package outline

Package Type: SOP8

	Symbol Parameter (Unit : mm)													
	A			Al		В		C			e			
Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max
1.35		1.75	0.10		0.25	0.33		0.51	0.19		0.25		1.27 BSC	

	Symbol Parameter (Unit : mm)													
	D			H		E		L			h			
Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max
4.80		5.00	5.80		6.20	3.80		4.00	0.40		1.27	0.25		0.50

Symbol Parameter (Unit : mm)						
θ						
Min	Nom	Max				
0		8 °				

Ordering Information

TTY6758 Package Type Chip Type Wafer Type

Package ItemPackage TypeChip TypeWafer TypeTTP277-AO8NSOP8No supportNo support

Revision History:

1. 2019/06/19: Version: 1.0

Initial version.

2. 2020/10/09 : Version: 1.1

Modify the temperature range